2025MBA报考测评申请中......

说明:您只需填写姓名和电话即可免费预约!也可以通过拨打热线免费预约
我们的工作人员会在最短时间内给予您活动安排回复。

导读:

  一、集合元素的个数以最常见的全排列为例,用123456789组成数字不重复的九位数,则每一个九位数都是集合A的一个元素,集合A中共有9!个元素。以下我们用SA)表示集合A的元素个数。

  二、集合的对应关系两个集合之间存在对应关系(以前学的函数的概念就是集合的对应关系)。如果集合A与集合B存在一一对应的关系,则SA=SB)如果集合A中每个元素对应集合BN个元素,则集合B的元素个数是AN倍(严格的定义是把集合B分为若干个子集,各子集没有共同元素,且每个子集元素个数为N,这时子集成为集合B的元素,而A的元素与B的子集有一一对应的关系,则SB=SA*N

  例1:用123456789组成数字不重复的六位数集合A为数字不重复的九位数的集合,SA=9!集合B为数字不重复的六位数的集合。把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。显然各子集没有共同元素。每个子集元素的个数,等于剩余的3个数的全排列,即3!这时集合B的元素与A的子集存在一一对应关系,则 SA=SB*3 SB=9/3!这就是我们用以前的方法求出的P96

  例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法?设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。把集合B分为子集的集合,规则为全部由相同数字组成的数组成一个子集,则每个子集都是某6个数的全排列,即每个子集有6!个元素。这时集合C的元素与B的子集存在一一对应关系,则 SB=SC*6 SC=9/3/6!这就是我们用以前的方法求出的C96) 以上都是简单的例子,似乎不用弄得这么复杂。但是集合的观念才是排列组合公式的来源,也是对公式更深刻的认识。大家可能没有意识到,在我们平时数物品的数量时,说12345,一共有5个,这时我们就是在把物品的集合与集合(12345)建立一一对应的关系,正是因为物品数量与集合(12345)的元素个数相等,所以我们才说物品共有5个。

  我写这篇文章的目的是把这些潜在的思路变得清晰,从而能用它解决更复杂的问题。

  例39个人坐成一圈,问不同坐法有多少种? 9个人排成一排,不同排法有9!种,对应集合为前面的集合A 9个人坐成一圈的不同之处在于,没有起点和终点之分。设集合D为坐成一圈的坐法的集合。以任何人为起点,把圈展开成直线,在集合A中都对应不同元素,但在集合D中相当于同一种坐法,所以集合D中每个元素对应集合A9个元素,所以SD=9/9 我在另一篇帖子中说的方法是先固定一个人,再排其他人,结果为8!。这个方法实际上是找到了一种集合A与集合D之间的对应关系。用集合的思路解决问题的关键就是寻找集合之间的对应关系,使一个集合的子集与另一个集合的元素就会形成一一对应的关系。

  例4:用1234