2025MBA报考测评申请中......

说明:您只需填写姓名和电话即可免费预约!也可以通过拨打热线免费预约
我们的工作人员会在最短时间内给予您活动安排回复。

导读:

由于基础阶段已经把重要知识点进行系统全面的复习了,对基本题型的训练已经过关了,接下来要重点训练一些常考题型和一些比较困难的题型。

由于考试难题一般出现在高等数学,而高等数学题目中比较困难的是证明题,在整个高等数学,容易出证明题的地方如下:

一、数列极限的证明

数列极限的证明是数一、二的重点,特别是数二最近几年考的非常频繁,已经考过好几次大的证明题,一般大题中涉及到数列极限的证明,用到的方法是单调有界准则。

二、微分中值定理的相关证明

微分中值定理的证明题历来是考研的重难点,其考试特点是综合性强,涉及到知识面广,涉及到中值的等式主要是三类定理:

1.  零点定理和介质定理;

2.  微分中值定理;

包括罗尔定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用

来处理高阶导数的相关问题,考查频率底,所以以前两个定理为主。

3.  微分中值定理

积分中值定理的作用是为了去掉积分符号。

在考查的时候,一般会把三类定理两两结合起来进行考查,所以要总结到现在为止,

所考查的题型。

三、方程根的问题

包括方程根唯一和方程根的个数的讨论。

四、不等式的证明

五、定积分等式和不等式的证明

主要涉及的方法有微分学的方法:常数变异法;积分学的方法:换元法和分布积分

法。

六、积分与路径无关的五个等价条件

这一部分是数一的考试重点,最近几年没设计到,所以要重点关注。

以上是容易出证明题的地方,同学们在复习的时候重点归纳这类题目的解法。